Axon Regrowth during Development and Regeneration Following Injury Share Molecular Mechanisms
نویسندگان
چکیده
BACKGROUND The molecular mechanisms that determine axonal growth potential are poorly understood. Intrinsic growth potential decreases with age, and thus one strategy to identify molecular pathways controlling intrinsic growth potential is by studying developing young neurons. The programmed and stereotypic remodeling of Drosophila mushroom body (MB) neurons during metamorphosis offers a unique opportunity to uncover such mechanisms. Despite emerging insights into MB γ-neuron axon pruning, nothing is known about the ensuing axon re-extension. RESULTS Using mosaic loss of function, we found that the nuclear receptor UNF (Nr2e3) is cell autonomously required for the re-extension of MB γ-axons following pruning, but not for the initial growth or guidance of any MB neuron type. We found that UNF promotes this process of developmental axon regrowth via the TOR pathway as well as a late axon guidance program via an unknown mechanism. We have thus uncovered a novel developmental program of axon regrowth that is cell autonomously regulated by the UNF nuclear receptor and the TOR pathway. CONCLUSIONS Our results suggest that UNF activates neuronal re-extension during development. Taken together, we show that axon growth during developmental remodeling is mechanistically distinct from initial axon outgrowth. Due to the involvement of the TOR pathway in axon regeneration following injury, our results also suggests that developmental regrowth shares common molecular mechanisms with regeneration following injury.
منابع مشابه
Gene Manipulation Strategies to Identify Molecular Regulators of Axon Regeneration in the Central Nervous System
Limited axon regeneration in the injured adult mammalian central nervous system (CNS) usually results in irreversible functional deficits. Both the presence of extrinsic inhibitory molecules at the injury site and the intrinsically low capacity of adult neurons to grow axons are responsible for the diminished capacity of regeneration in the adult CNS. Conversely, in the embryonic CNS, neurons s...
متن کاملAxon Regeneration Pathways Identified by Systematic Genetic Screening in C. elegans
The mechanisms underlying the ability of axons to regrow after injury remain poorly explored at the molecular genetic level. We used a laser injury model in Caenorhabditis elegans mechanosensory neurons to screen 654 conserved genes for regulators of axonal regrowth. We uncover several functional clusters of genes that promote or repress regrowth, including genes classically known to affect axo...
متن کاملS6 kinase inhibits intrinsic axon regeneration capacity via AMP kinase in Caenorhabditis elegans.
The ability of axons to regrow after injury is determined by the complex interplay of intrinsic growth programs and external cues. In Caenorhabditis elegans mechanosensory neuron, axons exhibit robust regenerative regrowth following laser axotomy. By surveying conserved metabolic signaling pathways, we have identified the ribosomal S6 kinase RSKS-1 as a new cell-autonomous inhibitor of axon reg...
متن کاملAxon guidance and injury-lessons from Wnts and Wnt signaling.
Many studies in the past decade have revealed the role and mechanisms of Wnt signaling in axon guidance during development and the reinduction of Wnt signaling in adult central nervous system axons upon traumatic injury, which has profound influences on axon regeneration. With 19 Wnts and 14 known receptors (10 Frizzleds (Fzds), Ryk, Ror1/2 and PTK7), the Wnt family signaling proteins contribut...
متن کاملThe ability of postmitotic neurons to extend long axons is essential both to the establishment of neural circuitry during development, and to the regrowth of injured axons in adults. Axon elongation is generally confined to a period beginning
The ability of postmitotic neurons to extend long axons is essential both to the establishment of neural circuitry during development, and to the regrowth of injured axons in adults. Axon elongation is generally confined to a period beginning shortly after neurons undergo their final mitosis. Once mature synapses have been formed axon growth is sharply curtailed. Although most adult neurons los...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 22 شماره
صفحات -
تاریخ انتشار 2012